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G E N E R A T I O N  O F  A P L A N E  R E L A X A T I O N  W A V E  

IN AN A E R O C O L L O I D A L  S U S P E N S I O N  OF S O L I D  
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O. M. T o d e s ,  a n d  S. A.  C h i v i l i k h i n  

P A R T I C  L E S  
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The analys is  of propagat ion of a s t a t iona ry  shock wave in an aerocol lo ida l  suspension [1-4] has shown that 
behind the shock front  is a r a t h e r  broad re laxa t ion  zone, in which the suspended par t i c les  a r e  gradual ly  ac -  
ce l e ra t ed  by the gas flow. Inthat  zone the pa r t i c l e s  a r e  heated up to the t e m p e r a t u r e  of the gas,  heat is r e -  
leased due to the work of f r ic t ion fo rces ,  and var ious  phase  t rans i t ions  a r e  poss ible ,  for  example ,  mel t ing  and 
evaporat ion of the colloidal  pa r t i c les .  It is exceedingly difficult to obtain an analytic solution of the s y s t e m  of 
different ial  equations descr ib ing  the gas and pa r t i c l e s ;  as  a rule ,  a computer  is r ec ru i t ed  as an aid to finding 
solutions for var ious  specia l  cases .  

Even more  insurmountable  a r e  the ma themat i ca l  diff icult ies  assoc ia ted  with investigation of the t r ans ien t  
pa r t  of shock genera t ion in an aerocol lo id ,  as in the case ,  for  example ,  when a shock wave t ravel ing  through a 
pure  gas impinges on a domain fil led with an aerocol loid.  

For  a sma l l  volume concentrat ion of pa r t i c les  the leading edge of the shock wave en ters  the aerocol lo id  
v i r tua l ly  unchanged. Immedia te ly ,  however ,  two contact  su r faces  a r e  formed:  1) the boundary of the moving 
cloud of pa r t i c l e s ;  2) the boundary (interface) between the or iginal  (before a r r i v a l  of the shock) dusty gas and 
the clean gas .*  The pa r t i c l e s  set  in motion genera te  d is turbances  in the surrounding medium in the f o r m  of 
r a r e f ac t i on  and c o m p r e s s i o n  waves.  Inasmuch as the leading edge of the shock waves moves  re la t ive  to the 
t ra i l ing  gas at l e ss  than the veloci ty  of sound, the d is turbances  over take  the shock front  and begin to de fo rm it. 
Final ly a re f l ec ted  shock is fo rmed  and propaga tes  in the opposi te  direction.  

*The second boundary is logical ly  called the gas contact  sur face .  Its t r a j e c t o r y  is c l e a r l y  the t r a j e c t o r y  of the 
gas mass  p resen t  at  the initial instant at the nonmoving in ter face  between the gas and aerocol loid .  
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It mus t  also be recognized  that the aerocol lo idal  pa r t i c l e s  play a dual ro l e  f r o m  the the rmodynamic  point 
of view. On the one hand, they function as heat s inks when w a r m e d  by  the c o m p r e s s e d  and shock-hea ted  gas.  
On the other  hand, the d iss ipat ion of energy  through fr ic t ion between the gas and the par t i c les  causes  the la t ter  
to r e l e a s e  heat f r o m  the i r  su r f ace  and to act  as an addit ional heat source  for the gas.  This dual ro le  of the 
pa r t i c l e s  in the total  heat ba lance  can produce a nonmonotonic t e m p e r a t u r e  var ia t ion  in the re laxa t ion  zone. 

Var ious  methods can be used with succes s  to de te rmine  the cha r ac t e r i s t i c  a t t r ibutes  of the re laxa t ion  
wave genera ted  in an aerocol loid .  However,  before  running through countless  computat ional  va r ian t s  with dif-  
fe ren t  initial p a r a m e t e r s  in o rde r  to exhibit definite quanti tat ive laws it would be des i rab le  to de te rmine  by ap-  
p rox imat ive  methods a quali tat ive pa t te rn  of the influence of all  such p a r a m e t e r s  on the resu l t ing  shock s t r u c -  
ture .  This approach  to the solution of the s ta ted p rob l em is descr ibed  below. 

w 1. Statement of the Prob lem.  The method developed he re  is based on an i te ra t ive  p rocedure  with a 
spec ia l  s cheme  for  separa t ion  of the va r i ab l e s  cha rac t e r i z ing  the s ta te  and motion of the gas f r o m  the s ta te  and 
motion va r i ab le s  of the solid phase.  

To faci l i ta te  the de terminat ion  of all  the qual i ta t ive laws we f i r s t  introduce some  s impl i f icat ions .  We con- 
s ider  the gas to be ideal,  obeying the M e n d e l e e v - C l a p e y r o n  equation and having a definite adiabat ic  exponent 
T =Cp/Cv. We t r ea t  the se t  of pa r t i c les  as a continuum. For  a smal l  volume concentrat ion p p / p p <  10 -3, where  
pp  is the m a s s  densi ty  of the d i spe r sed  component  and pp  is  the densi ty of the par t ic le  ma te r i a l ,  this se t  can 
be r ega rded  as a pe r fec t ly  p las t ic  inviscid gas.  The pa r t i c les  a r e  smal l  enough to prevent  the colloid f r o m  
set t l ing apprec iab ly  during the t r ans i t  t ime of the re laxa t ion  wave. All pa r t i c les  have the s ame  radius .  The 
t he rma l  conductivity of  the solid component  is much g r e a t e r  than the t h e r m a l  conductivity of the gas,  so that 
the t e m p e r a t u r e  gradients  inside a par t ic le  a r e  negligible.  The local var ia t ions  of the veloci ty  field of the gas 
a r e  concent ra ted  sole ly  within the immedia te  p rox imi ty  of the given par t ic le  and do not affect  its neighbors .  
The re laxa t ion  t imes  for  the veloci ty  and par t i c le  heating a r e  de te rmined  by the v i scos i ty  and the rma l  conduc- 
t ivi ty  of the gas* and a re  equal to, r e spec t ive ly ,  

t ~ d'~ I pp~d'- 
- -  - - ,  T T  - -  7 Tu t8 }x 12 k 

where  pp  and c p  a r e  the densi ty  and specif ic  heat of the par t ic le  ma te r i a l ;  d is the par t ic le  d i ame te r ;  and p ,  k 
a r e  the v i scos i ty  and the rma l  conductivity of the gas; thus,  the two t imes  a r e  c lose  to one another  in prac t ice .  

The r e s t r i c t i ons  imposed on the d iamete r  d and m a s s  densi ty  pp  by the conditions of continuity of the d i s -  
pe r s ed  component ,  isolation of the pa r t i c l e s ,  and absence  of g rav i ty  set t l ing of the pa r t i c les  can be expres sed  
as inequalit ies for  the speci f ic  s y s t e m  of sand + a i r  under s tandard  conditions: 

~O-lSd -~ kgAna'< pp < 10 kg/m 3, d < 10 -3 m. 

Under the given assumpt ions  the aeroeol lo id  can be t r ea t ed  as a set  of two in te rpe rmea t ing  gaseS, and 
the m a s s ,  momentum,  and energy  balance equations for  each one wri t ten s e p a r a t e l y  in the f o r m  [3] 

Op ~ 0 
o-7 T -g-~x PU = O; (1.1) 

0 pu-~ pu T =Pp(Up- -U)  f~t~ (1.2) 0--7 W 

~Tp T §  1)-  5- §  T §  u~ _ = - -~-+(V 1) Pp IV (V - -  I) % (% u)]~ - -  

p=pT;  (1.4) 

-j/- pp + ~ pup = O; (1.5) 

0 8 

w p u p +  ~ u 2 -  Ox Pp p - -- Pp (Up -- u)/p2 (T); (1.6) 

0 [  0 [ ~-/-P; c r p + ? ( 7 - - 1 ) @  - i : ~ p p u p  c r v - k ? ( ' ~ - - l )  = - - p p l ' ~ ( y - - t )  u p ( u p - - u ) ) - k z c ( T p - - T ) g ] 9 ~  (1.7) 

where  p ,  u, p, and T a r e  the density,  veloci ty ,  p r e s s u r e ,  and t e m p e r a t u r e  of the t rue  gaseous component;  the 
subsc r ip t  p r e f e r s  to the p a r a m e t e r s  of the d i spe r sed  component;  • = T u / 7 T  = ( 2 / 3 ) T / c  Pr is the ra t io  of the 
c h a r a c t e r i s t i c  re laxa t ion  t imes ;  c =cp /Cv iS  the r e l a t ive  specif ic  heat of the par t ic le  ma te r i a l ;  Pr  is the prandt l  

* If n e c e s s a r y ,  additional al lowance can be made for  the influence of the Reynolds and Mach number s  on the 
given re laxa t ion  t imes .  
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number ;  /~~ =/~ f r ) /p  (T o) is the r e l a t ive  dynamic v i scos i ty  of the gas;  and f, g a r e  quanti t ies cha rac t e r i z ing  
the depa r tu re  of the pa r t i c l e  d r ag  f r o m  the Stokes law and of the heat t r a n s f e r  f r o m  the r e g i m e  Nu =2. We 
a s s u m e  [5] that f =  (1 +Rel /2 /6  +Re/60) [1 +exp( - 0 . 4 2 7 / M 4 - ~ - 3 . 0 / R e ~  g = l  +0.3Pr l /~Rel /~ .  These  equations 
a r e  given in d imens ion less  f o r m  with the values  of p ,  p, T and the speed of sound a in the u n d i s ~ r b e d  gas taken 
as the sca les  of the dependent va r i ab l e s ,  and with the c h a r a c t e r i s t i c  t ime  Tu and re laxa t ion  length ~,u =am'u, 
also calcula ted f r o m  the r e s t - g a s  p a r a m e t e r s ,  taken as the na tu ra l  units of t ime  and space  measu remen t .  

It is seen  that the comple te  s y s t e m  of different ia l  equations (1.1)-(1.7) decomposes  into two s u b s y s t e m s ,  
one descr ib ing  the gaseous  component  and the other  the d i spe r sed  component.  The only coupling between the 
s u b s y s t e m s  is through the r ight -hand s ides  of the equations,  i .e.,  the volume sources .  This fact  enables us to 
fo rmula te  the following i te ra t ive  scheme.  Assuming  f i r s t  that the pa r t i c les  do not influence the gas flow, we 
use (1.5)-(1.7) to d e t e r m i n e  the dis t r ibut ions of the p a r a m e t e r s  of the pa r t i c l e  cloud behind the shock wave. 
Using the descr ip t ion  thus obtained for  the flow of the d i spe r sed  component ,  we then find the per turba t ions  of 
the gas p a r a m e t e r s  f r o m  the  s u b s y s t e m  (1.1)-(1.4) and t r y  once again to solve (1.5)-(1.7) so as to re f ine  the 
p rev ious ly  obtained dis tr ibut ion of the p a r a m e t e r s  of  the pa r t i c l e s  in the shock wave,  and so on. To de te rmine  
the quali tat ive pa t te rn  of  events  taking place in the genera t ion of the re laxat ion  wave it is sufficient to analyze  
the r e su l t s  obtained af ter  the f i r s t  i terat ion step.  

w Analyt ical  Solution. Let a plane shock wave with an infinite f ront  and specif ied p a r a m e t e r s  P0, u0, 
P0, To Impinge at t ime  t = 0  on a cloud of par t i c les  occupying the ha l f - space  x >  0 and exis t ing in equi l ibr ium 
with a gas at  r e s t .  We adopt a coordinate  s y s t e m  ~ =w0t - x moving together  with the shock front and we intro-  
duce veloci t ies  Vp=W 0 - Up and v =w 0 - u. Since we a r e  a s suming  that the pa r t i c les  do not initially affect  the 
gas component  in the domain occupied by the pa r t i c l e s ,  the quanti t ies pp,  Vp, and Tp do not depend on the t ime,  
and so the subsys t em (1.5)-(1.7) is read i ly  integrated.  We a s sume ,  accordingly,  that the prof i les  of pp,  Vp, and 
Tp behind the shock f ront  a r e  known, as a r e  the laws governing the motion of the gas - a e r o c o l l o i d  contact  s u r -  
face ~.  (t). 

We now cons ider  the influence of the moving d i spe r sed  component  on the p a r a m e t e r s  of the gas in the 
shock wave. If we a s s u m e  a smal l  par t ic le  concentrat ion,  then the d i s tu rbances  introduced into the gas flow 
a re  smal l .  In this case ,  set t ing 

pl = (p - -  po)/po, r ,  = ( r  - ro)/To, pl  = (p - -  po)/po, v~ = (v - -  vo)/ao, 

we wri te  the subsys t em (1.1) -(1.4) in the l inear ized  f o r m  

~ A_ - opt 0vl ~- 0-7 ' v0 -~" + a o ~  " :: u, (2.1) 

Ov t 0rl ao Opl 
ot ~- v~ -~- ~ a'-~ = F ,  (~)0[~, (t)-- ~l; (2.2) 

~T 1 , OTt avl 
0--7 t Vo'~'~ + (~'-- t) a o ' ~  = F~(~)Ol~.(t) - - [ ] ,  (2.3) 

where  

F~ --  t --  f'~ (vp - -  vo) tt ~ (To) ! (up - -  vo), 
ao PO 

t ~ [c~ ( r p - T o )  g (vp--Vo) + ~ ( ~ - - t )  (vp- -vo) ' ]  (vp--vo)]  ~~ F2 = a-~ ro 

a r e  known functions depending only on the space  va r i ab le  ~ ; J (~) is the theta function. 

(2.4) 

(2.5) 
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We consider  the c o m p r e s s i o n  shock to be fixed at the point ~ =0, as is valid so long as the d i sp lacement  
s of the f ront  is inconsequential  r e l a t ive  to the length l =u0r 0 of the re laxa t ion  zone. Since the s tabi l izat ion 
t ime  of the flow behind the shock f ront  is ~ ~u, in the invest igated t ime  range  we have s / l  ~w/u0<<1, where  w 
is the per turba t ion  of the wave f ront  velocity.  Here ina f t e r ,  f o rma l ly  set t ing t =~o, we in te rpre t  this la t ter  t ime  
to be  of o rde r  l-u, at which t ime  the flow can be r ega rded  as s teady.  

The boundary  conditions at ~ =0 have the f o r m  

Pl  = (:;f'Vl' T1 = ~/'21' (2.6) 

where  t~ and fl a r e  constants  de te rmined  f r o m t h e  Rank ine-Hugonio t  re la t ions .  The  initial conditions a r e  t r iv ia l :  

Pl  =T1 =vl=0"  

We now cons ider  the behavior  of FI(~) and F~.(~). The function Fl(~) (2.4) desc r ibes  the t r an s f e r  of mo-  
men tum f r o m  the d i spe r sed  to the gaseous  component.  Consequently,  FI(~) is eve rywhere  posi t ive  and tends to 
ze ro  for  l a rge  ~. It acqu i res  its m a x i m u m  value immedia t e ly  behind the shock f ront ,  because  that is where  the 
d i f ference  between the pa r t i c l e  and gas- f low veloci t ies  is the g rea tes t .  The graph  of FI(~) is a descending 
curve  (Fig. 1). 

The second sou rce  F2(~) c h a r a c t e r i z e s  the t r a n s f e r  of heat f r o m  the gas to the d i spe r sed  phase  [first  
t e r m  in (2.5)] and the heat  r e l e a s e  due to the par t ia l  d iss ipat ion of kinetic energy  through fr ic t ion between the 
pa r t i c les  and gas flow. For  a weak shock wave (curve a) the f i r s t  t e r m  is dominant,  so that F~(~)< 0 (dashed 
curve).  In the case  of a s t rong  shock wave (curve b) the influence of diss ipat ion becomes  apprec iab le ,  p a r -  
t i cu la r ly  in the immedia te  vicini ty  of the shock front.  It can be shown that for  shock waves  of fa i r ly  grea t  in- 
tens i ty  F2(0) beco m es  posi t ive  and the graph  of F2(~) is r e p r e s e n t e d  by the d o t - d a s h  curve.  The occu r rence  
of a sudden drop of the function F2($ ) in the negat ive domain pe rmi t s  us to divide the re laxat ion  zone somewhat  
condit ionally into two pa r t s ,  such that heat r e l e a s e  due to kinetic energy  diss ipat ion is dominant in the f i r s t  
pa r t  immedia te ly  behind the shock wave and heat t r a n s f e r  f r o m  the gas to the pa r t i c les  is dominant in the 
second par t .  

We solve the s y s t e m  of equations (2.1)-(2.3) by the method of c h a r a c t e r i s t i c s .  In the postulated set t ing 
the c h a r a c t e r i s t i c  cu rves  a r e  s t ra igh t  l ines whose s lopes  re la t ive  to the axis a r e  known and equal to v 0 + 
a0, v 0 - a 0 ,  v 0. Introducing the new dependent va r i ab les  S = T T  1- (T-1)P l ,  RI=P~/T +vi,  R~=pl /T  - v 1 and 
rep lac ing  the der iva t ives  on the lef t -hand sides of (2.1)-(2.3) by the der iva t ives  along the cha r ac t e r i s t i c  d i r ec -  
t ions,  we obtain a s y s t e m  of th ree  o rd ina ry  different ia l  equations,  the solution of which has the following f o r m  
in the domain ~ <a+t: 

$ 

(2. S 7) 
u o r162 

. 

where  a + = v  0 +a 0; a_  =v 0 - a  0; S~ R~ a re  the values  of the functions S and R 1 at the shock discontinuity; and the 
ord ina tes  ~ 1(~, t), ~ 2(~, t) of the points of in tersect ion of the contact su r f ace  ~.  (t) with the c h a r a c t e r i s t i c s  of 
the r e s p e c t i v e  v 0 and a_  fami l i e s  (Fig. 2) through the point (~, t) a r e  de te rmined  f r o m  the equations 

t - -  (~ - -  ~)h,o = t,(~O, t + (~ --  ~ ) l l a _  I = t , (~) ,  

in which t .  (~) is the inverse  of the function ~.  (t). 

To de te rmine  the values  of S and R 1 at the c o m p r e s s i o n  shock we set  ~ =0 in (2.9). The value thus found 
for  R~(t) and conditions (2.6) make  it poss ib le  to obtain the requ i red  S O and R ~ so that Eqs. (2.7)-(2.9) yield a 
solution of the s ta ted p rob lem.  The physical  s ignif icance of the t e r m s  appear ing  in the re la t ions  obtained for  
the solution is obvious. Let ene rgy  sources  be absent ,  i .e. ,  let F 2 -  0. Then, putting R2----0, we have 

v l  = p l  = Pl. __ Tt __ t F l d ~  d-  B ~ t - -  
y y--I 2 

whence it is clear that, the integral being positive, the disturbances propagating along the a + characteristics 
are compression waves. Analogously, putting i~- O, we arrive at an expression showing that the a_ character- 
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istics a re  c a r r i e r s  of ra refac t ion  waves. Both families of waves (compression and rarefact ion)  a re  formed by 
the mutual t r ans fe r  of momentum between the gaseous and dispersed components.  With an energy source  p r e s -  
ent, the amplitude of the resul t ing waves at a cer ta in  point depends on the intensity of the source  at that same 
point. This fact  is evinced by the second t e rms  enclosed in parentheses  in Eqs. (2.8) and (2.9). Inasmuch as 
the sources  F 1 and F 2 a re  subsequently distr ibuted continuously throughout the entire domain occupied by the 
suspended par t ic les ,  summation of the disturbance takes place along the corresponding charac te r i s t i cs .  More-  
over ,  as a resul t  of heat re lease  f r o m  the sources ,  the entropy of a smal l  mass  of the gas var ies  in motion of 
the latter along the cha rac te r i s t i c s  of the v 0 family (2.7). 

w 3. Deformation of the Profiles of the Gas Pa ramete r  behind the Shock Front.  We show that the contact  
surface  ~, (t) is a sur face  of f i r s t - o r d e r  discontinuity of the functions vl, p~, and T1.  From relat ions (2.7)- 
(2.9) we obtain 

f0vl ~ ~ [~. (t) -- Vo] F 1 (~.) -~ -~  F 2 (~.), 

L O~ J ----- 'F , w h e r e  = �9 
["+ - ~, (t)l [I ~ -  I + L (t)t ~ N" u - o  o~ ~.+o 

It can be shown that, unlike (2.7)-(2.9), the relat ions for  the discontinuities of the derivatives in the t ime 
interval f r o m  0 to t , ,  where  t .  is the root  of the equation ~ .  (t) =a +, are  valid when the contact  sur face  ~. (t) 
is situated above the sonic line ~ =a+t. This case  is rea l ized  for a shock wave with supersonic  flow of gas 
behind its front,  i.e., when ~, (0)>a +. For  this r eason  the discontinuities of the derivat ives of all pa ramete r s  
of the gas become infinite at the t ime t = t .  when the veloci ty of the fo remos t  par t ic le  becomes  equal to the 
veloci ty of the dis turbances c rea ted  by it, corresponding to the formation at the sur face  ~.  (t) of a compress ion  
shock ref lected f r o m t h e  aerocollotd.  For  shock waves with subsonic flow of the gas behind the front  [~. (0)<a+] 
the effect just descr ibed does not happen. 

It is evident that the discontinuities of the derivat ives of the veloci ty and p r e s s u r e  at the surface  $ ,  (t) 
tend to zero  with t ime. For  the density, on the Other b,nd, we have at large t imes  

{0pl/0~} ~ ( t / ~ ) F , ( L ) / ( ~ , ( t )  - -  vo). (3.1) 

Therefore ,  depending on the ra tes  at which the numera tor  and denominator in (3.1) tend to zero ,  the magnitude 
of the discontinuity of the derivative of the density, and so also the t empera tu re  s ince {Opl/O~}~O, canbecome  
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equal  to zero ,  a nonzero constant,  or  infinity. In the l as t  case ,  which occurs  when t h e r m a l  re laxa t ion  is 
s lower  than dynamic  re laxat ion,  a s e c o n d - o r d e r  discontinuity of the densi ty and t e m p e r a t u r e  of the gas -  
eous component  is fo rmed  at  the sur face  ~.(t). 

We now cons ider  the va r ia t ion  of the t e m p e r a t u r e  prof i le  of the gas behind the shock front .  For  s impl ic i ty  
we a s s u m e  the flow to be  steady.  It can be shown that for  a weak c o m p r e s s i o n  shock 

�9 lap 
dr 1 T (V - -  ~-) ao%FI -(~) -}- ('i' - -  i) -~o c~, ( r  0 - -  r p )  

% ~ = "~ ~ _ , 0  ~ > 0, 

i .e. ,  the function TI(~) grows monotonically.  In the case  of a s t rong  shock ( second-order  discontinuity) 

T (Y - -  i) aovoF 1 (~) + Y -~,, l 32F2 (~) 

v 0 ~  I = % _ , 0  ~ 

Consequently (see Fig. 1), dT1/d~ I~ --0 > 0, i .e. ,  immedia te ly  behind the f ront  the t e m p e r a t u r e  inc reases .  At 
s o m e  dis tance f r o m  the shock f ront ,  where  energy  diss ipat ion has become  inconsequential ,  s e v e r a l  si tuations 
a r e  possible .  For  example ,  if the t e m p e r a t u r e  equalization of the pa r t i c les  and gas flow is f a s t e r  than the 
veloci ty  equalization,  we st i l l  have dT1/d ~ > O, so that the t e m p e r a t u r e  prof i le  i nc reases  everywhere .  But if the 
t e m p e r a t u r e  re laxa t ion  is s lower ,  then the t e m p e r a t u r e  of the gas in this f a r  region is influenced mainly  by 
mutual  heat t r a n s f e r  with the pa r t i c l e s .  In that event 

dTi pp c~. (T O -- Tp) ~ 0, 
Vo ~ ~ po ~ 2 

a 0 - -  v 0 

i .e. ,  the t e m p e r a t u r e  of the gas d e c r e a s e s .  Under the indicated conditions, t he re fo re ,  the t e m p e r a t u r e  in the 
shock wave exhibits a nonmonotonic var ia t ion.  

We next de te rmine  the na ture  of the deformat ions  of the prof i les  of the gas p a r a m e t e r s  in low-in tens i ty  
shock waves .  We a s s u m e  that S~ at ~ =0. This approximat ion  is  not too bad for  shocks with p r e s s u r e s  
up to P0=2.5 at the front  [6]. 

For  l a rge  t imes  we de te rmine  the quanti t ies p l ,  vl ,  Pl, and T 1 at the shock front  (f), at  the g a s - a e r o c o l -  
loid contact  su r f ace  ~,  (t), and at the contact  su r f ace  ~ =v0t r ep re sen t i ng  the t r a j e c t o r y  of the gas m a s s  exis t ing 
at the initial instant at the point ~ =0. We have 

pf Tf t ~ [ F  F~'~ ~==0, p f - = -  vf - - =  - -  3 ~  1 - - - T )  d~; ~, v - I  21a_lo 

~=~,(t) ,  p , = v ,  P* r, , i (F ,  + F,)d~; 
? y -  i 2a+  " ~  

o 
(3.2) 

~=Vot, v, = --~ = v, = .-~-, 

Pl  = O . - - ~  f F . ~ d ~ ,  T I - - - T . ~ - 2 - ~ F , , H  ~ . 
' [ O d  " 
0 0 

F r o m  the given expres s ions  we deduce the inequali t ies 

9f pf, Tf, T 1 ~ 0 ;  p.,  p . ,  T. ,  p l > 0 ,  

and the ve loc i ty  per tu rba t ion  is eve rywhe re  posi t ive.  Moreover ,  the absolute values  of the per turba t ions  of all  
the p a r a m e t e r s  of the gaseous  component  acqui re  the i r  m a x i m u m  values  at the shock f ront  and the i r  min imum 
values at  the su r face  ~.  (t). 

w Ref lec ted  Shock. The exis tence  of a r e f l ec ted  c o m p r e s s i o n  shock in the interact ion of a shock wave 
with an aerocol lo id  is obvious insofar  as the c o m p r e s s i o n  wave genera ted  thereby ,  as we showed, propagates  in 
the opposi te  di rect ion to the incident wave. But the f ami ly  of c o m p r e s s i o n  waves  is known t o b e  unstable and 
with t i m e  eventual ly genera tes  a c o m p r e s s i o n  shock. 

We now de te rmine  the t ime  and point at  which the re f l ec ted  shock is formed.  In a coordinate  s y s t e m  a t -  
tached to the gas flow behind the incident shock f ront  with origin at the gas contact  sur face  (~ =v0t) the given 
p r o b l e m  is analogous to the p rob l em  of the motion of a piston dr iving into a gas at r e s t .  The dif ference is that 
now the pis ton ve loc i ty  ~ (t) = ~.  (t) - v  0 and the ve loc i ty  of the gas on its su r face  u t  =a 0v. (t) a r e  different.  We 
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now confine our d iscuss ion  to the ca se  of subsonic motion of the contact  su r f ace  ~ (t). The coordinate  and t ime  
dependence of the ve loc i ty  of the gas ahead of the piston can be wr i t ten  in the implici t  f o r m  [7] 

x = ~(u) + (ao + [(V + i ) / 2 ] u ) [ t  - -  t~(u)l. (4.1) 

F r o m  the cha r ac t e r i s t i c  in tersect ion condition we obtain the coordinate  x x and t ime  t x of inception of the shock 
w a v e ~  

2 , . [ a . , ~ ( o ) l  t ~ =  2 ao--~'(O__ ) (4.2) 
x x = v + ~  .~:(o) ' ~ + l  ~r 

A s s u m i n g t h a t  the r e f l ec t ed  shock is of mode ra t e  intensity,  we can wr i t e  an express ion  for  the ve loc i ty  of its 
f ront  [6]: 

U = ao + i(~, + 1)/2] u: + [ ( u  i)~/32ao] u2. (4.3) 

Different ia t ing (4.1) and using (4.3), we obtain the equation 

~. - - 7 - ~ J  = 
. du 2 

which has  the following solut ica  for  the initial condition t] u = 0 - t x :  

, .0+ 

= ~,+t u ] J  " - [ ~  ' 
o 

where  the va r i ab l e  of integrat ion v gives  in conjunction with (4.1) a p a r a m e t r i c  definition of the law of motion of 
the r e f l ec ted  shock f ront .  

An asympto t ic  ( t -* ~) value of the ve loc i ty  U can  be  found f r o m  (4.3) on the ba s i s  of express ion  (3.2). One 
pa r t i cu la r  implicat ion of this  opera t ion is that the intensi ty of the r e f l ec t ed  shock inc rea se s  with the initial con-  
cent ra t ion  of aerocol lo ida l  pa r t i c les .  It a l so  follows f r o m  (4.2) that the shock inception t ime  d e c r e a s e s  with in- 
c r e a s i n g  pa r t i c l e  concentrat ion.  For  t ransonic  flow of the gas behind the incident shock f ront ,  however,  the 
n u m e r a t o r  in (4.2) becomes  sma l l  and so the influence of the concentra t ion on the t ime  t x is l e ss  apprec iable .  

The foregoing r e s u l t s  descr ib ing  the generat ion and dynamics  of the r e f l ec t ed  shock have  been  obtained 
on the assumpt ion  of subsonic flow of the gas behind the incident front .  For  sonic flow the ve loc i t yo f th e  source  
of d i s turbances  is equal at the initial instant to the propagat ion veloci ty  of the d is turbances  themse lves .  Con- 
seq.uently, a r e f l e c t e d  shock is f o rm ed  instantly.  It a l so  follows f r o m  (4.2) that  t x = 0  in this case .  

In the c a s e  of supersonic  flow behind the shock front,  the pa r t i c l e s  advance ahead of thei r  own d is turbances  
a t  the outset .  The i r  Velocities a r e  equalized at a t i m e  de te rmined  by  the condition of tangency of the sonic l ine 
with the contact  su r face .  That  t ime  then c l ea r l y  co r r e sponds  to the point of fo rmat ion  of the r e f l ec ted  shock. 

w Compar i son  with Numer ica l  Calculat ions.  The analyt ical  solution obtained for  the l inear ized  p rob-  
l em of fo rmat ion  of a re laxa t ion  shock wave in an aerocoUoid has made it poss ib le  to advance a number  of 
quali tat ive cons idera t ions  about the prof i les  of the p a r a m e t e r s  of the gaseous  and d i spe r sed  components .  For  
a m o r e  re f ined  exposit ion of the fundamental  laws we in tegra te  the s y s t e m  (1.1)-(1.7) numer ica l ly .  We use the 
L a x - W e n d r o f f  d i f ference  method [8, 9]. We a s s u m e  that the undis turbed gas  (presumably  air)  exis ts  at s t an-  
dard conditions. 

Typical  d is t r ibut ions  obtained for  the p a r a m e t e r s  of both components  at two t imes  (t =0.4 and t =0.84) by 
the n u m e r i c a l  calculat ions a r e  given in Fig. 3 '  r e l a t ive  to the  l abo ra to ry  coord ina te  s y s t e m  for  a shock wave 
with an initial  p r e s s u r e  at the f ront  P0=10 and an aerocol lo ida l  cloud of solid pa r t i c l e s  with d=10  -5 m and c =1 
at the initial densi ty  p p = l .  The space  va r i ab l e  is m e a s u r e d  f r o m  the initial posi t ion of the g a s - a e r o c o l l o i d  
boundary ,  and the t ime  f r o m  the instant of pas sage  of the incident shock f ront  a c r o s s  that boundary.  

It follows f r o m  Fig. 3 that under the influence of the suspended pa r t i c l e s  on the gas flow the shock wave is 
deformed.  Behind the shock f ront  in th is  case  the p a r a m e t e r s  of the gas  gradual ly  chnnge f r o m  thei r  initial 
values  in the incident shock to values  cor responding  to a s t a t ionary  re laxa t ion  wave. The prof i les  of the d i s -  
pe r s ed  component  undergo an analogous t r ans fo rma t ion  (Fig. 3b-d). Format ion  of the re f l ec ted  shock takes  
place s imul taneously .  

*F igu re  3 does not show the sl ight osci l la t ions  that occur  nea r  the shocks and the p a r t i c l e - g a s  contact  su r face  
as  f in i t e -d i f fe rence  effects .  
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Behind the re laxa t ion  wave f ront  is obse rved  a r e l a t ive ly  extended zone in which momen tum and energy  
a r e  t r a n s f e r r e d  back and fo r th  between the components .  The behavior  of the prof i les  of the gas p a r a m e t e r s  in 
this zone is qual i ta t ively  cons is ten t  with the r e su l t s  of the analyt ical  solution. As shown before ,  the values  of 
the veloci ty  u and p r e s s u r e  p a r e  de te rmined  by the superpos i t ion  of two fami l i es  of s imple  c o m p r e s s i o n  and 
r a r e f ac t i on  waves .  Compres s ion  d is turbances  a r e  absent  at the shock front ,  and the ampli tude of the r a r e f a c -  
tion wave has its m a x i m u m  modulus,  so that u and p a s s u m e  the i r  min imum values the re  (Figs. 3a and 3b). 
Compres s ions  begin to play an e v e r - i n c r e a s i n g  ro le  with dis tance f r o m  the shock f ront ,  and the influence of the 
r a r e f ac t ion  waves  subsides .  As a resu l t ,  u and p grow, acquir ing the i r  m a x i m u m  values at the end of the r e -  
laxation zone. 

We also note the nonmonotonic behavior  of the gas t e m p e r a t u r e  in the re laxa t ion  zone (Fig. 3c). The on-  
se t  of the local  T max imum,  as  a l r eady  shown, is r e l a t ed  to the preponderan t  influence of energy  diss ipat ion 
over  heat  t r a n s f e r  behind the shock f ront  (see Fig. 1). The analyt ica l ly  pred ic ted  f i r s t - o r d e r  discontinuit ies of 
the functions T and p at the g a s - a e r o c o l l o i d  contact  su r f ace  also take place (see Fig. 3c and d). But the d i s -  
continuit ies of the de r iva t ives  of u and p become  significant  at e a r l i e r  t imes  than those given in Fig. 3. 

Thus,  the r e s u l t s  of the analyt ical  solution of the l inear ized  p r o b l e m  and of the n u m e r i c a l  solution of the 
s y s t e m  (1.1)-(1.7) a g r e e  comple te ly  in the quali tat ive r e spec t .  . . . . . . . . .  

The authors  a r e  gra tefu l  to Prof.  I. N. Taganov for  a s s i s t ance  with the numer i ca l  calculat ions.  
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